IOM ENTRANCE EXAM SYLLABUS FOR MBBS
IOM (Institute of Medicine) offers five and half years MBBS program in Nepal which includes one year internship. However, it takes around 6 years to complete the course. The seat is limited to take part in MBBS program as IOM admits only 43 Nepalese students and foreigners as pass the criteria met by IOM. Due to the limitation, all students must take part in the entrance examination prior to selection for the course. Here you can find the marks distribution for IOM MBBS Entrance Exam and the syllabus for it.
Mark Distribution:
Subject Marks Number of questions
Physics 20 20
Chemistry 30 30
Zoology 30 30
Botany 20 20
Syllabus for IOM MBBS Entrance Preparation:
PHYSICS
Unit I. Mechanics:
Kinematics:
Newton’s laws of motion.
Circular motion:
Gravitation:
Rotational motion:
Simple Harmonic Motion:
Elasticity:
Surface tension:
Viscosity:
Unit II. Heat & Thermodynamics:
Heat & temperature:
Transmission of heat:
Hygrometry:
Thermodynamics:
Unit III. Waves & Optics:
Reflection at plane and curved surfaces:
Dispersion of light:
Photometry:
Wave motion:
Progressive wave:
Principle of superposition:
Electromagnetic waves:
Diffraction of light:
Unit IV. Electricity & Magnetism:
Electrostatics:
Electric current:
Magnetic field:
Electromagnetic induction:
self induction, mutual induction, energy stored in magnetic field of a coil, A.C. and D.C. generator, RMS value and peak value of the A.C. current; A.C. through L.R. and C in series: power in A.C. circuit; transformer.
Unit V. Modern Physics:
Electron:
Millikan’s oil drop experiment, gaseous discharge, cathode rays; motion of electron in electric field and magnetic field, thermionic emission of electrons, specific charge of electron (e/m), cathode ray oscilloscope, photons: photoelectric effect.
Atoms:
Bohrs theory of H-atom; energy levels; excitation and ionization energies; production of laser; its properties and uses, production of X-rays; properties and uses of Xrays; de Broglie’s wave, Nucleus:
atomic number; mass number and isotopes; mass energy relation; mass defect and binding energy.
Radioactivity: properties of alpha, beta and gamma rays, G.M. tube; absorption of beta particles and gamma rays; laws of radioactive disintegration; half-life and mean-life; artificial disintegration; nuclear reaction; nuclear fission and fusion; radio isotopes; radiation hazards and safety measures.
Electronics:
conductor, semiconductor and insulator, junction diode, rectifier, transistor, CE amplifier.
CHEMISTRY
Unit I. General & Physical Chemistry:
Language of Chemistry Symbols and formulae, atoms and molecules, elements and compounds
States of Matter Molecular interpretation of three states of matter Gaseous state: Gas laws: Boyle’s Law; Charles’ Law, Kelvin scale of temperature; universal gas constant; Dalton’s Law of partial pressure, Graham’s law of diffusion, kinetic theory of gases (no derivation), deviation of real gas from ideal behaviour, calculations involving gas laws. Liquid state: properties of liquids, solution, concentration of solution, concept of molarity, solubility, effect of temperature on solubility, solubility curve, viscosity and surface tension. Solid state: Properties of solids, classification of solids based on different binding forces, crystals, crystal latrice, seven types of crystal systems.
Laws of Stoichiometry and Avogadro’s Hypothesis Laws of stoichiometry:
Law of conservation of mass, law of constant proportions, law of multiple proportions, law of reciprocal proportions, Gay Lussac’s law of gaseous volumes, chemical calculations based on stoichiometry. Atomic and molecular masses, empirical and molecular formula, Avogadro’s hypothesis, important deductions from Avogadro’s hypothesis, Avogadro’s number, mole concept, determination of chemical formulae from percent composition, problems based on chemical equations.
Atomic Structure:
The subatomic particles, the electrons and nucleons (protons and neutrons), their masses and charges, the atomic mass unit, Dalton’s atomic theory, Rutherford’s experiment, Bohr’s model, interpretation of hydrogen spectra on the basis of Bohr’s model, elementary idea of quantum mechanical model of atom, de Broglie relation, Heisenberg uncertainty principle, quantum numbers, atomic orbital, shapes of s and p orbitals, Pauli’s exclusion principle, Hund’s rule of maximum multiplicity; Aufbau principle, quantum designation of electrons, electronic configuration of atoms in the ground state up to Z=30, Isotopes and fractional atomic weights, nuclear fission and fusion, radioactive disintegration and half life.
Chemical Bonding:
Valency, octet rule, chemical bonds and Lewis structure, ionic bonds, covalent bond, electronegativity and ionic character of covalent bond, coordinate covalent bond, idea of metallic bonds, intermolecular forces, van der Waal’s forces, hydrogen bonding, importance of hydrogen bonding, VSEPR theory and shapes of BeF2, BF3, CH4, H2Q, NH3, PF5, and SF6.
Oxidation & Reduction:
Electronic concept of oxidation and reduction reactions, oxidation number, balancing redox reactions by oxidation number and ion-electron methods.
Periodic Table
Mendeleev’s periodic table, modern periodic law and long form of periodic table, types of elements on the basis of periodic table, periodic trends in ionization energy, electron affinity, atomic radii, electronegavity and valency.
Acids, Bases and Salts
Classical definition, Arrhenius concept of acids, bases and salts, Bronsted-Lowry concept, Lewis concept, hydrogen ion concentration and pH, calculation of pH of strong acids, neutralization, hydrolysis of salts.
Volumetric Analysis
Equivalent weight of elements and compounds (acids, bases and salts), standard solution, primary and secondary standards, different ways of expressing concentration of solution, normality eqution, titration based on neutralization and redox reactions, indicator, titration curve and selection of acid base indicator, solving problems on acidimetry and alkalimetry involving normality and molarity.
Electrochemistry
Electrolytic and metallic conduction, Arrhenius theory of ionization, Faraday’s laws mechanism of electrolysis and criteria of product formation electrode potential, standard electrode potential, EMF of a galvanic cell and the use of electrode potential to predict a chemical reaction, commercial batteries.
Chemical Kinetics
Rate of reaction, rate law and rate constant, order and molecularity, half life period, factors affecting the rate of reaction (particle size, concentration, temperature and catalyst, concept of activation energy and idea of photochemical reaction.
Chemical Equilibrium
Equilibrium in physical processes, features of dynamic equilibrium, equilibrium constant, Kp and Kc, relation between Kp and Kc, LeChatelier’s principle: effect of pressure, concentration, temperature and catalyst on chemical equilibrium, equilibrium involving ions, ionization of weak electrolytes (Ostwald’s dilution law), degree of ionization and ionization constant, solubility and solubility product, common ion effect and their applications.
Chemical Thermodynamics
Language of thermo-chemistry, standard heats of formation and combustion, heat of neutralization, Hess’s law, energy changes in chemical reactions, spontaneous processes, second law of thermodynamics, entropy and its physical concept, entropy and criteria of spontaneity in terms of entropy change of universe, entropy change in phase transformations, Gibb’s free energy and the direction of chemical change, standard free energy change and equilibrium constant, free energy and useful work.
Unit II. Inorganic Chemistry:
Non-metals Hydrogen:
Unique position in periodic table, isotopes, preparation, properties and uses. Oxygen and ozone:
Preparation, properties and uses of oxygen, classification of oxides, preparation, properties and uses of ozone, structure of ozone, hole in the ozone layer.
Water: Structure of water, solvent properties of water, hard and soft water, detergents and water pollution, heavy water.
Carbon:
Allotropes of carbon including fullerence, preparation, properties and uses of CO and CO2, poisoning by CO.
Nitrogen:
Nitrogen cycle, preparation, properties and uses of nitrogen, preparation, properties and uses of ammonia, principle of manufacture of ammonia by Haber process, structure of ammonia, principle of manufacture of nitric acid by Ostwald process, properties and structure of and uses of nitric acid, structure of oxides of nitrogen.
Salphur:
Allotropes of sulphur, preparation, properties and uses of H2S, SO2, principle of manufacture of sulphuric acid by contact process properties and uses of sulphuric acid, sulpher dioxide and year pollution, acid rain
Phosphorus:
Allotropes of phosphorus, phosphien and phosphate fertilizer.
Halogen and halogen acids:
Preparation, properties and uses, comparative study of HCL, HBr and HI, test of halides and tincture of iodine.
Noble gases:
Introduction, isolation and uses of noble gases, compounds of xenon – xenon fluorides.
Metals and metallurgy:
Introduction, distinction between metals and non-metals, metalloid, electrochemical series and occurrence of metal, metallurgical principle and metallurgical terms.
Alkali and alkaline earth metals:
Pariodic discussion, general characteristics of alkali and alkaline earth metals, principle of extraction of sodium (Down’s process), properties and uses of sodium, principle of manufacture of sodium carbonate, sodium hydroxide, and their properties and uses, biological importance of sodium and potassium, preparation, properties and uses of quicklime, plaster of Paris and bleaching powder, chemistry of magnesium hydroxide and Epsom salt.
Coinage metals: Introduction, occurrence, extraction and properties of copper, chemistry of compounds of copper and silver (CuO, Cu2O, CuSO4, 5H2O, AgNO3, and AgCl), purity of gold (carats and fineness).
Heavy metals: (zinc, iron, mercury and lead):
Occurrence, extraction and properties of zinc, iron and mercury, manufacture of steel, heat treatment of steel, stainless steel, rusting of iron, galvanization, chemistry of compounds of iron, zinc and mercury and lead (FeCl3, FeCl3, 6H2O, FeSO4, 7H2O, Zno, ZnSO4, 7H2O, Hg2Cl2, HgCl2, PbO. and Pb3O4), Mercury pollution and mercury poisoning.
Unit III. Organic Chemistry:
Organic Chemistry:
some basic principles Introduction:
Definition, sources and importance of organic compounds, detection of N, S and halogens in organic compounds.
Bonding in organic compounds:
Tetracovalency of carbon, hybridization (sp, sp-2, sp3 ), sigma and pi – bonds. Electronic displacement in covalent bond: inductive effect, electromeric effect, mesomeric effect and resonance. Fission in covalent bond: Hemolytic and heterolytic fission, electrophiles and nucleophiles, carbocation and carbonions. Formula of organic compounds: Empirical, molecular and structura, functional groups, homologous series, isomerism (structural & stereoisomerism), nomenclature of organic compounds.
Hydrocarbons
Classification of hydrocarbons, sources of hydrocarbons, nomenclature.
Alkanes:
Nomenclature, preparation, properties and uses of alkanes, octane number, preparation and properties of methane.
Alkenes:
Nomenclature, preparation, properties and uses of alkenes, Markovnikov’s rule and peroxide effect, preparation, properties and uses of ethane.
Alkynes:
Preparation, properties and uses of ethyne, acidic character of ethyne.
Organic halogen compounds Alkyl halides:
Nomenclature, nature of C-X bond, properties and uses of alkyl halides.
Chloroform:
Preparation, properties and uses.
Alcohols
Classification, nomenclature, distinction between 10 , 20 and 30 alcohols, industrial preparation of ethanol (hydration of ethane and fermentation) prpperties of alcohols.
Ethers
Nomenclature, important methods of preparation of diethyl ether, chemical and physical properties and uses of diethyl eather.
Carbonyl compounds
Structures and nomenclature, preparation, properties and uses of formaldehyde, acetaldehyde and acetone, aldol condensation, Cannizzaro reaction.
Carboxylic Acids
Structures and nomenclature, preparation, properties and uses of formic and acetic acid, derivatives of carboxylic acid: acid chlorides, acid anhydrides, ester and amides.
Amines
Structures, classification, nomenclature, distinction and separation of primary, secondary and tertiary amines, chemical and physical properties and uses of ethylamine.
Aromatic Hydrocarbons Benzene:
Structure of benzene, nomenclature and structure of substituted benzene, properties and uses of benzene.
Aniline:
Preparation, properties and uses.
Nitrobenzene:
Preparation, properties and uses. Phenol: Preparation, properties and uses.
Carbohydrates, proteins, nucleic Acids, and Lipids Carbohydrates:
Classification of carbohydrates, structures of glucose and fructose, functions of carbohydrates. Protein: Amino acids and peptide bonds, classification of proteins, denaturation and hydrolysis of protein, functions of proteins.
Nucleic acids:
Types and constituents of nucleic acids, functions of nucleic acids.
Lipids: Lipids and triglycerides, phospholipids.
Polymers, Pesticides, Dyes and Drugs Polymers:
Polymerization (addition and condensation), classification of polymers, and some important synthetic polymers (polyethylene, PVC, polystyrene, Teflon, polyester, Terylene (Dacron), nylon 66.
Pesticides:
Introduction, DDT, Malathion and pheromones.
Dyes:
Classification of dyes with examples (based on chemical constitution and mode of application).
Drugs:
General introduction to drugs: Antiseptic, analgesic, antipyretic, antacids, and tranquilizers.
BOTANY
Unit I. Structure, reproduction and Economic Importance of:
Bacteria, Virus and Lichens.
Unit II. Structure, reproduction and economic Importance of:
Algae: Nostoc and Spirogyra
Fungi: Mucor and Agaricus
Broyophyta: Marchania and Funaria
Pteridophyta: Fern (Pteridium)
Gymnosperm: Pinus and Cycas
Unit III. Plant Morphology:
Parts of a typical flowering plant (Mustard)
Leaf: morphology and modification
Root: Regions of root, Types amd Modification
Stem: Types and Modification
Flower: Parts
Fruits: Types
Seeds: Dicot, Monocot
Unit IV. Taxonomy of Angiosperms:
Basic concept of taxonomy and binominal nomenclature
Characteristics and Economic importance of the following families: Cruciferae, Solanaceae, Gramineae and Liliaceae
Unit V. Plant Anatomy:
Types of tissues, Primary internal structure of root, stem and leaf of monocoat and dicot, Secondary growth of dicot stem
Unit VI. Plant Physiology:
Water relations (difussion, osmosis, absorption, transpiration and ascent of sap)
Photosynthesis
Respiration
Growth hormones
Unit VII. Cell Biology:
Cell as a unit of life, structure of prokaryotic and eukaryotic cell, cell organelles and their function.
Biochemically important molecules (carbohydrates, proteins, amino acids nucleic acid and lipids)
Cell division (Mitosis, meiosis and their significance)
Unit VIII. Genetics:
Mendelism, Mendel’s Laws of Inheritance
Concept of incomplete dominance and co-dominance
Genetic materials (RNA and DNA) gene pool, crossing over, sex linked inheritance and mutation.
Unit IX. Developmental Biology:
Reproduction and development in angiosperms
Vegetative propagations
Micro and mega-sporogenesis, micro and megagametogenesis
Pollination, fertilization and development of dicot and monocot embryo.
Unit X. Ecology and Biodiversity Conservation:
Plant adaptation (hydrophytes, mesophytes and xerophuytes)
Types of forest in Nepal
Biodiversity conservation, endangered species of plants and wildfire, causes of extinction
Abiotic and biotic factors, food chain, food web, trophic level, pond and grassland ecosystems.
Ecological imbalances and its consequences: a. Green house effect b. Depletion of ozone layer c. Acid rain d. Pollution: Air, Water, Soil, their sources of pollution, effects and control measures.
Unit XI. Application of Biology:
Introduction of biotechnology
Principles of plant and animal breeding
Biofertilizers
Antibiotics, Vaccines
Tissue and Organ transplantation
Test tube baby
Fermentation
Genetic engineering and tissue culture.
ZOOLOGY
Unit I. Introduction:
Scope and branches of biology, its relation with other subjects
Life and its origin, Oparin and Halden’s theory, Miller Urey Experiments
Life components (Organic and inorganic)
Unit II. Animal Diversity and their classification:
General characteristics and its classification up to class with examples of the following: Protozoa, Porifera, Coelenterata, Platyhelminthes, Aschelminthes, Annelida, Arthropoda, Mollusca, Echinodermata and chordata.
Unit III. Biology of the following:
Plasmodium vivax: Habit and habitat, structure (Sporozoite), Life-cycle and control of malaria
Paramecium Caudatum: Habit and habitat, structure, reproduction (Binary fission and conjugation with its significance)
Pheretima posthuma: Habit and habitat, structure, digestive, nervous and reproductive system and economic importqance of earthworms.
Rana tigrina: Habit and habitat, structure, digestive, nervous, respiratory, circulatory, excretory and reproductive systems. Histology of the related organs.
Mammal (Rabbit / Man): Skin, respiratory, digestive, nervous, circulatory, excretory and reproductive systems. Histology of the related organs, human blood groups and sense organs (Eye and Ear)
Unit IV. Human Diseases:
Socially significant: Drug abuse, Alcoholism and smoking.
Communicable: Typhoid, tuberculosis, Ascariasis, Girardiasis and AIDS.
Non-communicable: Cancer.
Unit V. Babbitt Bones:
Appendicular and axial
Unit VI. Endocrinology of Mammal:
Pituitary, thyroid and parathyroid, adrenal, islets of langerhans
Unit VII. Animal Tissues:
Epithelial, Connective, Muscular and Nervous.
Unit VIII. Animal Behavior:
Reflex action
Taxes
Leadership
Migration of fishes and birds: Habit and habitat, structure, digestive, nervous and reproductive.
Unit IX. Animal Adaptation:
Aquatic
Amphibians
Terrestrial
Volant (aerial)
Desert and parastitic
Unit X. Evolution:
Definition, Organic evolution
History, theories of organic evolution (Lamarckism, Darwinism, Neo-Darwinism)
Evidence of organic evolution (morphological, embryological, anatomical, palentological, chemical and genetical)
Human evolution.
Unit XI. Developmental Biology:
Development of frog (Embryonic and post embryonic development)
Who can apply for IOM Entrance Exam?
Those having passed the proficiency certificate in Medical Science under Tribhuvan University academic programme of two and a half years with Physics, Chemistry, Botany, Zoology and English or proficiency certificate in general science with Physics, Chemistry, botany, Zoology and English or 10+2 or Higher Secondary or equivalent academic programmes with Physics, Chemistry, Botany Zoology and English of Tribhuvan University Boards recognized by it with fifty percent aggregate mark, can apply into the programme.
Admission criteria
Nature of Exam
The IOM MBBS/BDS entrance exam is an objective exam consisting of 100 questions. Every question paper carries one marks and there is no negative marking for wrong answers. The exam duration is 2 hours. The minimum cutoff mark in the entrance exam is 50. Merit list of those who have passed the exams will be published according to marks obtained by candidates.
Eligibility
Candidates must have completed Ten Plus Two (10+2) or PCL or Diploma or equivalent academic programs with Physics, Chemistry, Botany, Zoology, and English with a minimum of
2.4 CGPA (Overall) or 50% in 10+2 or equivalent.
‘C+’ Grade in Physics, Chemistry, and Biology.
'C' Grade in remaining subjects.